Evolusi Arsitektur komputer dan organisasi komputer 1



EVOLUSI ARSITEKTUR KOMPUTER DAN ORGANISASI KOMPUTER

1.      Evolusi Arsitektur Komputer

a.       Perkembangan Arsitektur Komputer
Banyak perkembangan dari komputer yang telah kita ketahui sampai dengan generasi yang terbaru. tetapi ada baiknya kita belajar kmbali sejarah awal nya.Arsitektur komputer  dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya. Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll).
Di antara demikian banyak pemahaman tentang arsitektur, arsitektur dikenal juga sebagai suatu tradisi yang berkembang. Dari waktu ke waktu wajah arsitektur selalu mengalami perubahan. Hal-hal yang mempengaruhi perkembangan dan pengembangan arsitektur tidak hanya berupa keadaan eksternal, tetapi juga keadaan internal. Disini kita membahas mengenai evolusi arsitektur pada komputer. Arsitektur dari komputer sendiri merupakan suatu susunan atau rancangan dari komputer tersebut sehingga membentuk suatu kesatuan yang dinamakan komputer. Komputer sendiri berevolusi dengan cepat mulai dari generasi pertama hingga sekarang. Evolusi sendiri didasarkan pada fungsi atau kegunaanya dalam kehidupan. Evolusi pada komputer sendiri ada karena keinginan atau hal yang dibutuhkan manusia itu sendiri. Sekarang ini komputer sudah dapat melakaukan perintah yang sulit sekalipun tidak seperti dulu yang hanya bisa melakukan yang sederhana saja. Itulah yang dinamakan evolusi arsitektur yaitu perubahan bentuk juga fungsi dan kemampuannya.

b.      KLASIFIKASI ARSITEKTUR KOMPUTER

·        Arsitektur Von Neumann
Arsitektur von Neumann (atau Mesin Von Neumann) adalah arsitektur yang diciptakan oleh John von Neumann (1903-1957). Arsitektur ini digunakan oleh hampir semua komputer saat ini. Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”.

c.       sistem-komputer
Pada perkembangan komputer modern, setiap prosesor terdiri dari atas :
·        Arithmetic and Logic Unit  (ALU)
Arithmatic and Logic Unit atau Unit Aritmetika dan Logika berfungsi untuk melakukan semua perhitungan aritmatika (matematika) dan logika yang terjadi sesuai dengan instruksi program. ALU menjalankan operasi penambahan,  pengurangan, dan operasi-operasi sederhana lainnya pada input-inputnya dan memberikan hasilnya pada register output.

·        Register
Register merupakan alat penyimpanan kecil yang  mempunyai kecepatan akses cukup tinggi, yang  digunakan untuk menyimpan data dan instruksi yang  sedang diproses, sementara data dan instruksi lainnya yang menunggugiliran untukdiproses masihdisimpan yang menunggugiliran untukdiproses masihdisimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya.

·        Control Unit
Control Unit atau Unit Kontrol berfungsi untuk mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input  menerima data dan kapan data diolah serta kapan ditampilkan pada alat output. Unit ini juga mengartikan instruksi-instruksi dari program. Unit ini juga mengartikan instruksi-instruksi dari program komputer, membawa data dari alat input ke memori utama dan mengambil data dari memori utama untuk diolah. Bila ada instruksi untuk perhitungan aritmatika atau  perbandingan logika, maka unit kendali akan mengirim  instruksi tersebut ke ALU. Hasil dari pengolahan data  dibawa oleh unit kendali ke memori utama lagi untuk  disimpan, dan pada saatnya akan disajikan ke alat output.
·        Bus
Bus adalah sekelompok lintasan sinyal yang digunakan untuk menggerakkan bit-bit informasi dari satu tempat ke tempat lain, dikelompokkan menurut fungsinya Standar bus dari suatu sistem komputer adalah bus alamat (address bus), bus data (data bus) dan bus kontrol (control bus). Komputer menggunakan suatu bus atau saluran bus sebagaimana kendaraan bus yang mengangkut penumpang dari satu tempat ke tempat lain, maka bus komputer mengangkut data. Bus komputer menghubungkan CPU pada RAM dan periferal. Semua komputer menggunakan saluran busnya untuk maksud yang sama.

·        Arsitektur RISC
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computing (RISC) atau “Komputasi set instruksi yang disederhanakan” pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson,pengajar pada University of California di Berkely.

·        risc
masalah-komputasi RISC, yang jika diterjemahkan berarti “Komputasi Kumpulan Instruksi yang Disederhanakan”, merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.
Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.

·        Karakteristik RISC
    Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC
    Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control..

d.      Karakteristik-Karakteristik Eksekusi Instruksi
Salah satu evolusi komputer yang besar adalah evolusi bahasa pemprograman. Bahasa pemprograman memungkinkan programmer dapat mengekspresikan algoritma lebih singkat, lebih memperhatikan rincian, dan mendukung penggunaan pemprograman terstruktur, tetapi ternyata muncul masalah lain yaitu semantic gap, yaitu perbedaan antara operasi-operasi yang disediakan oleh HLL dengan yang disediakan oleh arsitektur komputer, ini ditandai dengan ketidakefisienan eksekusi, program mesin yang berukuran besar,dan kompleksitas kompiler.
·        Operasi
Beberapa penelitian telah menganalisis tingkah laku program HLL (High Level Language). Assignment Statement sangat menonjol yang menyatakan bahwa perpindahan sederhana merupakan satu hal yang penting. Hasil penelitian ini merupakan hal yang penting bagi perancang set instruksi mesin yang mengindikasikan jenis instruksi mana yang sering terjadi karena harus didukung optimal.
·        Operand
Penelitian Paterson telah memperhatikan [PATT82a] frekuensi dinamik terjadinya kelaskelas variabel. Hasil yang konsisten diantara program pascal dan C menunjukkan mayoritas referensi menunjuk ke variable scalar. Penelitian ini telah menguji tingkah laku dinamik program HLL yang tidak tergantung pada arsitektur tertentu. Penelitian [LUND77] menguji instruksi DEC-10 dan secara dinamik menemukan setiap instruksi rata-rata mereferensi 0,5 operand dalam memori dan rata-rata mereferensi 1,4 register. Tentu saja angka ini tergantung pada arsitektur dan kompiler namun sudah cukup menjelaskan frekuensipengaksesan operand sehingga menyatakan pentingnya sebuah arsitektur.
·        Procedure Calls
Dalam HLL procedure call dan return merupakan aspek penting karena merupakan operasi yang membutuhkan banyak waktu dalam program yang dikompalasi sehingga banyak berguna untuk memperhatikan cara implementasi opperasi ini secara efisien. Adapun aspeknya yang penting adalah jumlah parameter dan variabel yang berkaitan dengan prosedur dan kedalaman pensarangan (nesting).

·        Arsitektur CISC
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.

Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.

Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.

·        Karakteristik CISC

    Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat
    Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan.

·        Arsitektur Harvard
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak  diperlukan multiplexing  alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakanorganisasiinternal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapaLebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat.t diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.

·        Arsitektur Blue Gene
Blue Gene adalah sebuah arsitektur komputer yang dirancang untuk menciptakan beberapa superkomputer generasi berikut, yang dirancang untuk mencapai kecepatan operasi petaflop (1 peta = 10 pangkat 15), dan pada 2005 telah mencapai kecepatan lebih dari 100 teraflop (1 tera = 10 pangkat 12). Blue Gene merupakan proyek antara Departemen Energi Amerika Serikat (yang membiayai projek ini), industri (terutama IBM), dan kalangan akademi. Ada lima projek Blue Gene dalam pengembangan saat ini, di antaranya adalah Blue Gene/L, Blue Gene/C, dan Blue Gene/P.

2.      Organisasi computer
a.       struktur dasar komputer.
Struktur dasar komputer memiliki beberapa bagian,dan setiap bagian tesebut mempunyai fungsi yamg berbeda-beda. Berikut ini bagian-bagian dari struktur dasar komputer.
·        Unit Masukan (Input Unit)
Berfungsi untuk menerima masukan (input) kemudian membacanya dan diteruskan ke Memory / penyimpanan. Dalam hubungan ini dikenal istilah peralatan masukan (input device).
·        Unit Kontrol (Control Unit)
Berfungsi untuk melaksanakan tugas pengawasan dan pengendalian seluruh sistem komputer. Ia berfungsi seperti pengatur rumah tangga komputer, memutuskan urutan operasi untuk seluruh sistem.
·        Unit Logika & Aritmatika (Arithmetical & Logical Unit)
Berfungsi untuk melaksanakan pekerjaan perhitungan atau aritmatika & logika seperti menambah, mengurangi, mengalikan, membagi dan memangkatkan. Selain itu juga melaksanakan pekerjaan seperti pemindahan data, penyatuan data, pemilihan data, membandingkan data, dll.
·        Unit Memori / Penyimpan (Memory / Storage unit)
Berfungsi untuk menampung data/program yang diterima dari unit masukan sebelum diolah oleh CPU dan juga menerima data setelah diolah oleh CPU yang selanjutnya diteruskan ke unit keluaran
·        Unit Keluaran (Output Unit)
 Berfungsi untuk menerima hasil pengolahan data dari CPU melalui memori. Seperti halnya pada unit masukan maka pada unit keluaran dikenal juga istilah peralatan keluaran (Output device) dan media keluaran (Output media).

b.      organisasi komputer.
Organisasi Komputer adalah bagian yang terkait erat dengan unit-unit operasional. contohnya teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal–sinyal kontrol. Organisasi komputer bisa kita artikan sebagai cara bagi komputer (yang didesign oleh manusia) dalam menkonsolidasikan diri mereka hingga membentuk suatu performa yang diinginkan, seperti halnya organisasi yang sering kita temukan, organisasi komputer ini juga memiliki tujuan, tujannya adalah menghasilkan kerja komputer seperti yang diinginkan manusia sebagai pembuatnya.
Organisasi komputer berkaitan dengan unit operasional dan interkoneksi yang merealisasi spesifikasi arsitektural;
·        Atribut organisasional meliputi rincian teknologi hardware yang diketahui pemrogram (sinyal kontrol, interface komputer dan peripheral dan teknologi memori yang digunakan)
       - Contoh : instruksi perkalian akan diimplementasi unit perkalian khusus atau
         mekanisme penjumlahan berulang merupakan masalah organisasional.


Referensi :

Komentar

Postingan populer dari blog ini

JENIS GARDU INDUK DAN KOMPONEN PENDUKUNG

Pengertian Ekologi dan Ilmu lingkungan Secara Umum

PIPELINING, RISC DAN PROSESOR PARALELL