Arsitektur set intruksi dan CPU



1.         ARSITEKTUR SET INTRUKSI
Set Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada). Arsitektur set instruksi berbeda dengan mikroarsitektur, yang merupakan sejumlah teknik desain prosesor yang digunakan, dalam prosesor tertentu, untuk menerapkan set instruksi. Prosesor dengan microarchitectures yang berbeda dapat berbagi set instruksi yang sama. Sebagai contoh, Intel Pentium dan AMD Athlon mengimplementasikan versi yang hampir identik dari set instruksi x86, tetapi memiliki desain internal yang berbeda secara radikal.
a)      Klasifikasi Set Instruksi
Ada 2 jenis klasifikasi set instruksi yang utama yaitu :
·        CISC (Complex Instruction Set of Computing)
 CISC (Complex Instruction Set of Computing) adalah desain prosesor dimana instruksi tunggal dapat menjalankan beberapa operasi tingkat rendah (seperti beban dari memori, operasi aritmatika, dan penyimpanan memori) atau mampu menjalankan operasi multi-langkah atau mode pengalamatan dalam instruksi tunggal. Istilah ini surut diciptakan berbeda dengan Reduced Instruction Set of Computing (RISC) dan karena itu telah menjadi sesuatu dari istilah umum untuk segala sesuatu yang bukan RISC, dari komputer mainframe yang besar dan kompleks untuk mikrokontroler sederhana di mana beban memori dan operasional penyimpanan tidak lepas dari instruksi aritmatika.
·        RISC (Reduced Instruction Set of Computing)
RISC (Reduced Instruction Set of Computing) adalah strategi desain CPU berdasarkan ide bahwa set instruksi yang disederhanakan memberikan kinerja yang lebih tinggi bila dikombinasikan dengan arsitektur mikroprosesor mampu melaksanakan instruksi tersebut menggunakan siklus mikroprosesor yang lebih sedikit per instruksi. [1] Sebuah komputer berdasarkan strategi ini adalah set instruksi komputer berkurang, juga disebut RISC. Arsitektur menentang disebut kompleks set instruksi komputasi (CISC).
b)      Dua bagian utama arsitektur komputer
·        Instruction set architecture (ISA) / arsitektur set instruksi
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.
·        Hardware system architecture (HSA) / arsitektur system hardware
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.
c)      Karakteristik dan Fungsi Set Instruksi
Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions). Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).
·        Elemen-elemen dari Set Instruksi
Ø  Operation Code (opcode)                : menentukan operasi yang akan dilaksanakan
Ø  Source Operand Reference              : merupakan input bagi operasi yang akan dilaksanakan
Ø  Result Operand Reference                : merupakan hasil dari operasi yang dilaksanakan
Ø  Next instruction Reference    : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai.
d)      Design set instruksi
Design set instruksi merupakan masalah yang sangat kompleks yang melibatkan banyak aspek, diantaranya adalah :
·        Kelengkapan set instruksi
·        Ortogonalitas (sifat independensi instruksi)
·        Kompatibilitas : Source Code Compatibility & Object Code Compatibility
Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format).
·        Jenis Operand
Ø  Address
Ø  Numbers                 : Integer, Floating Point, Decimal
Ø  Character                 : ASCII, EBCDIC
Ø  Logical Data
·        Jenis Instruksi
Ø  Data processing        : Arithmetic dan Logic Instructions
Ø  Data storage : Memory instructions
Ø  Data Movement       : I/O instructions
Ø  Control                    : Test and branch instructions

Instruksi aritmetika memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan teutama untuk data di register CPU. Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register. Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.
e)      Teknik Pengalamatan
Ø  Immediate Addressing
Ø  Direct Addressing
Ø  Indirect Addressing
Ø  Register addressing
Ø  Register indirect addressing
Ø  Displacement addressing
Ø  Stack addressing

 
Immediate Addressing (Pengalamatan Segera)
Adalah bentuk pengalamatan yang paling sederhana.
Penjelasan :
Ø  Operand benar-benar ada dalam instruksi atau bagian dari intsruksi
Ø  Operand sama dengan field alamat
Ø  Umumnya bilangan akan disimpan dalam bentuk complement dua
Ø  Bit paling kiri sebagai bit tanda
Ø  Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data
Keuntungan :
Ø  Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
Ø  Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat
Kekurangan :
Ø  Ukuran bilangan dibatasi oleh ukuran field
Contoh :
ADD 7 ; tambahkan 7 pada akumulator

Direct Addressing (Pengalamatan Langsung)
Penjelasan :
Ø  Teknik ini banyak digunakan pada komputer lama dan komputer kecil
Ø  Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus
Kelebihan :
Ø  Field alamat berisi efektif address sebuah operand


Kekurangan :
Ø  Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
Contoh :
ADD A ; tambahkan isi pada lokasi alamat A ke akumulator

Indirect Addressing (Pengalamatan tak langsung)
Penjelasan :
Ø  Merupakan mode pengalamatan tak langsung
Ø  Field alamat mengacu pada alamat word di alamat memori, yang pada gilirannya akan berisi alamat operand yang panjang
Kelebihan :
Ø  Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi
Kekurangan :
Ø  Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi

Contoh :
ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator

Register addressing (Pengalamatan Register)
Penjelasan :
Ø  Metode pengalamatan register mirip dengan mode pengalamatan langsung
Ø  Perbedaanya terletak pada field alamat yang mengacu pada register, bukan pada memori utama
Ø  Field yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose
Keuntungan :
Ø  Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori
Ø  Akses ke register lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepat
Kerugian :
Ø  Ruang alamat menjadi terbatas
Register indirect addressing (Pengalamatan tak-langsung register)
Penjelasan :
Ø  Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
Ø  Perbedaannya adalah field alamat mengacu pada alamat register
Ø  Letak operand berada pada memori yang dituju oleh isi register
Ø  Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
Ø  Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak
Ø  Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung
Displacement addressing
Penjelasan
Ø  Menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsung
Ø  Mode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit
Ø  Operand berada pada alamat A ditambahkan isi register
Ø  Tiga model displacement Relative addressing register yang direferensi secara implisit adalah Program Counter (PC) Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat-Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya.
Ø  Base register addressing register yang direferensi berisi sebuah alamat memori dan field alamat berisi perpindahan dari alamat itu Referensi register dapat eksplisit maupun implisit Memanfaatkan konsep lokalitas memori
Ø  Indexing field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
Ø  Merupakan kebalikan dari mode base register
Ø  Field alamat dianggap sebagai alamat memori dalam indexing
Ø  Manfaat penting dari indexing adalah untuk eksekusi program-pprogram iteratif
Contoh :
Field eksplisit bernilai A dan field imlisit mengarah pada register
 
Stack addressing
Penjelasan :
Ø  Stack adalah array lokasi yang linier = pushdown list = last-in-firs-out
Ø  Stack merupakan blok lokasi yang terbaik
Ø  Btir ditambahkan ke puncak stack sehingga setiap blok akan terisi secara parsial yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stack
Ø  Dua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack pointer mereferensi ke elemen ketiga stack, Stack pointer tetap berada dalam register Dengan demikian, referensi-referensi ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung

2.         CPU (Central Processing Unit )
            Unit Pemroses Sentral (UPS) (bahasa Inggris: Central Processing Unit/Processor; CPU), merujuk kepada perangkat keras komputer yang memahami dan melaksanakan perintah dan data dari perangkat lunak. Istilah lain, pemroses/prosesor (processor), sering digunakan untuk menyebut CPU. Adapun mikroprosesor adalah CPU yang diproduksi dalam sirkuit terpadu, seringkali dalam sebuah paket sirkuit terpadu-tunggal. Sejak pertengahan tahun 1970-an, mikroprosesor sirkuit terpadu-tunggal ini telah umum digunakan dan menjadi aspek penting dalam penerapan CPU. CPU Merupakan bagian utama dari komputer karena processor berfungsi untuk mengatur semua aktifitas yang ada pada komputer. Kecepatan eksekusi processor tergantung apalagi pada frekuensinya, satuan adalah MHz (MegaHertz) atau GHz (1 GigaHertz = 1000 MegaHertz).

Komponen CPU terbagi menjadi beberapa macam, yaitu sebagai berikut:
·        Unit kontrol yang mampu mengatur jalannya program. Komponen ini sudah pasti terdapat dalam semua CPU. CPU bertugas mengontrol komputer sehingga terjadi sinkronisasi kerja antarkomponen dalam menjalankan fungsi-fungsi operasinya. termasuk dalam tanggung jawab unit kontrol adalah mengambil intruksi-intruksi dari memori utama dan menentukan jenis instruksi tersebut. Bila ada instruksi untuk perhitungan aritmetika atau perbandingan logika, maka unit kendali akan mengirim instruksi tersebut ke ALU. Hasil dari pengolahan data dibawa oleh unit kendali ke memori utama lagi untuk disimpan, dan pada saatnya akan disajikan ke alat output. Dengan demikian tugas dari unit kendali ini adalah:
Ø  Mengatur dan mengendalikan alat-alat masukan (input) dan keluaran (output).
Ø  Mengambil instruksi-instruksi dari memori utama.
Ø  Mengambil data dari memori utama (jika diperlukan) untuk diproses.
Ø  Mengirim instruksi ke ALU bila ada perhitungan aritmetika atau perbandingan logika serta mengawasi kerja dari ALU.
Ø  Menyimpan hasil proses ke memori utama.

·        Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses. Memori ini bersifat sementara, biasanya digunakan untuk menyimpan data saat di olah ataupun data untuk pengolahan selanjutnya. Secara analogi, register ini dapat diibaratkan sebagai ingatan di otak bila kita melakukan pengolahan data secara manual, sehingga otak dapat diibaratkan sebagai CPU, yang berisi ingatan-ingatan, satuan kendali yang mengatur seluruh kegiatan tubuh dan mempunyai tempat untuk melakukan perhitungan dan perbandingan logika.
·        ALU unit yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang ditentukan. ALU sering di sebut mesin bahasa karena bagian ini ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean yang masing-masing memiliki spesifikasi tugas tersendiri. Tugas utama dari ALU adalah melakukan semua perhitungan aritmetika yang terjadi sesuai dengan instruksi program. ALU melakukan semua operasi aritmetika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder.Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (¹ ), kurang dari (<), kurang atau sama dengan (£ ), lebih besar dari (>), dan lebih besar atau sama dengan (³ ).
·        CPU Interconnections adalah sistem koneksi dan bus yang menghubungkan komponen internal CPU, yaitu ALU, unit kontrol dan register-register dan juga dengan bus-bus eksternal CPU yang menghubungkan dengan sistem lainnya, seperti memori utama, peranti masukan /keluaran
PENGERTIAN BUS
Pada motherboard terdapat saluran-saluran penghubung yang menghubungkan satu komponen dengan komponen lainnya. Saluran penghubung ini berupa garis-garis yang tercetak pada PCB motherboard. Melalui saluran-saluran inilah data, informasi, dan instruksi-instruksi yang diberikan pada komputer ditransfer/melintas dari komponen satu ke komponen lainnya. Data dan instruksi tersebut diangkut dalam wujud sinyal-sinyal elektronis yang mempunyai makna tertentu. Sekelompok saluran yang mempunyai fungsi yang sama disebut jalur atau bus. Saluran-saluran penghubung tadi disebut pula dengan istikah konduktor.
ORGANISASI BUS
Organsiasi bus merupakan sekumpulan dari bagian-bagian bus dimana tersusun menjadi satu,yang memungkinkan suatu bus dapat bekerja dan dapat dilakukan. Adapun bagian tersebut yaitu seperti Pengertian jalur tidak sama dengan saluran. Dalam hal ini, jalur adalah kata jamak dari saluran. Pahamilah penjelasan berikut ini: Jalur data (data bus) yang terdiri dari beberapa (sejumlah) saluran data, jalur adres (address bus) terdiri dari beberapa (sejumlah) saluran adreess dan jalur kontrol (control bus) terdiri dari beberapa (sejumlah) saluran control.
STRUKTUR BUS
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran control. Saluran data(data bus) adalah lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran dengan tujuan agar mentransfer word dalam sekali waktu. Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit.
KONEKSI BUS
Bus merupakan lintasan komunikasi yang menghubungkan dua atau lebih komponen komputer. Sifat penting dan merupakan syarat utama bus adalah media transmisi yang dapat digunakan bersama oleh sejumlah perangkat yang terhubung apadanya.
Karena digunakan bersama, diperlukan aturan main agar tidak terjadi tabrakan data atau kerusakan data yang ditransmisikan. Walaupun digunakan bersama namun dalam satu waktu hanya ada sebuah perangkat yang dapat menggunakan bus.
TIPE BUS
Berdasar jenis busnya, bus dibedakan menjadi bus yang khusus menyalurkan data tertentu, misalnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus. Namun apabila bus dilalukan informasi yang berbeda baik data, alamat maupun sinyal kontrol dengan metode mulipleks data maka bus ini disebut multiplexed bus.
Keuntungan mulitiplexed bus adalah hanya memerlukan saluran sedikit sehingga dapat menghemat tempat, namun kerugiannya adalah kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimulitipleks.
Saat ini yang umum, bus didedikasikan untuk tiga macam, yaitu bus data, bus alamat dan bus
kontrol.
ALU (Aritmetik Logic Unit)
sebuah sirkuit digital yang melakukan aritmatika dan logika operasi. ALU adalah sebuah blok bangunan fundamental dari central processing unit komputer, dan bahkan yang paling sederhana mikroprosesor mengandung satu untuk tujuan seperti timer mempertahankan. Prosesor ditemukan di dalam CPU modern dan unit pengolahan grafis ( GPU ) mengakomodasi ALUS sangat kuat dan sangat kompleks, sebuah komponen tunggal mungkin berisi sejumlah alus.
·        Fixed Point
tipe data yang nyata untuk nomor yang telah tetap jumlah digit setelah (dan kadang-kadang juga sebelum) titik radix (setelah titik desimal dalam notasi desimal bahasa Inggris '.'). Representasi fixed-point nomor dapat dibandingkan dengan (dan lebih menuntut komputasi) lebih rumit floating point representasi nomor. Fixed-point nomor berguna untuk mewakili nilai-nilai pecahan, biasanya dalam basis 2 atau basis 10, ketika menjalankan prosesor tidak memiliki unit floating point (FPU) atau jika fixed-point menyediakan peningkatan kinerja atau akurasi untuk aplikasi di tangan. Paling rendah-biaya tertanam mikroprosesor dan mikrokontroler tidak memiliki FPU.
·        Floating Point
floating point menjelaskan metode mewakili bilangan real dalam cara yang dapat mendukung berbagai nilai. Nomor, pada umumnya, mewakili sekitar untuk tetap jumlah digit yang signifikan dan ditingkatkan menggunakan eksponen . Dasar untuk scaling biasanya 2, 10 atau 16. Jumlah yang khas yang dapat diwakili tepat adalah dalam bentuk:Signifikan digit × basis eksponen Floating point merujuk pada fakta bahwa titik radix (titik desimal, atau, lebih umum di komputer, titik biner) dapat "mengambang", yaitu, dapat ditempatkan di mana saja relatif terhadap angka signifikan dari nomor tersebut. Posisi ini ditunjukkan secara terpisah dalam representasi internal, dan floating-point sehingga representasi dapat dianggap sebagai realisasi komputer notasi ilmiah.
CU (Control Unit)
salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas dari bagian lainnya dari perangkat CPU tersebut. Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor).
REGISTER
Adalah memori yang kecil pada computer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
·        Set Register Prosesor memiliki 16 register 16-bit, meskipun hanya 12 dari mereka adalah tujuan yang benar-benar umum. Empat pertama telah mendedikasikan menggunakan:
·        r0 (alias PC) adalah program counter. Anda bisa melompat dengan menentukan r0, dan konstanta yang diambil langsung dari aliran instruksi menggunakan pasca-kenaikan mode pengalamatan r0. PC selalu bahkan
·        r1 (alias SP) adalah stack pointer. Ini digunakan oleh panggilan dan instruksi dorong, dan dengan penanganan interupsi. Hanya ada satu stack pointer; MSP430 tidak memiliki apa pun yang menyerupai mode supervisor. Pointer stack selalu bahkan; Tidak jelas apakah LSB bahkan diimplementasikan.
·        r2 (alias SR) adalah register status.
·        r3 ini didesain untuk 0. Jika ditetapkan sebagai sumber, nilainya adalah 0. Jika ditetapkan sebagai tujuan, nilai tersebut akan dibuang.
·        Control Registerprosesor yang mengubah atau mengontrol CPU atau perangkat digital lainnya. Tugas dari control register adalah untuk mengontrol setiap alamat yang ada di CPU dan untuk switching mode pengalamatan.
VIRTUAL MEMORI
Virtual Memory adalah ruang HDD yang menggunakan beberapa bagian sebagai memori. Ini adalah aplikasi yang digunakan untuk menyimpan data dan instruksi yang saat ini tidak diperlukan agar proses oleh sistem.  Selama proses loading program, sistem akan menyalin data aplikasi dan instruksi dari HDD ke memori utama (sistem memori). Oleh karena itu sistem dapat menggunakan sumber daya seperti CPU untuk memproses dan melaksanakannya. Setelah mendapatkan memori sistem penuh, sistem akan mulai bergerak beberapa data dan instruksi yang tidak perlu lagi untuk memproses ke Virtual Memory sampai data dan instruksi mereka perlu proses lagi. Sehingga sistem dapat memanggil aplikasi berikutnya data dan instruksi dan menyalinnya ke memori utama agar sistem untuk memproses beristirahat dan beban program. Ketika data dan instruksi yang ada di Memori Virtual perlu proses lagi, sistem akan memeriksa terlebih dahulu memori utama untuk ruang. Jika ada ruang, itu hanya akan menukar mereka ke memori utama. Jika tidak ada ruang yang tersisa untuk memori utama, sistem akan memeriksa terlebih dahulu memori utama dan memindahkan setiap data dan instruksi yang tidak perlu proses ke Memori Virtual.
Kemudian menukar data dan instruksi yang perlu proses oleh sistem dari Memori Virtual ke memori utama. Setelah terlalu rendah dari ukuran Virtual Memory atau Memori Virtual ukuran besar (yang berarti ukuran yang berada di atas dua kali lipat dari sistem memori) bukan ide yang baik. Jika Anda menetapkan Memori Virtual terlalu rendah, maka OS akan terus mengeluarkan pesan kesalahan yang menyatakan baik Tak cukup memori atau Virtual terlalu rendah. Hal ini karena beberapa bagian dari sistem memori digunakan untuk menyimpan OS Kernel, dan membutuhkan untuk tetap berada dalam memori utama sepanjang waktu. Oleh karena itu sistem harus memiliki ruang untuk menyimpan proses saat ini tidak diperlukan data dan instruksi ketika memori utama bisa diisi. Jika Anda menetapkan ukuran Memori Virtual terlalu besar untuk mendukung aplikasi yang intensif, juga bukan ide yang baik. Karena akan menciptakan kinerja tertinggal, dan bahkan ia akan mengambil HDD ruang bebas. Kebutuhan sistem untuk mentransfer data dan aplikasi instruksi bolak-balik antara Memori Virtual dan Sistem Memori. Oleh karena itu, itu bukan ide yang baik. Ukuran yang ideal untuk Virtual Memory adalah ukuran default Virtual Memory, dan tidak boleh melebihi nilai ukuran triple memori sistem.

CHACHE MEMORY
Cache memori adalah memori berkapasitas terbatas, berkecepatan tinggi yang lebih mahal daripada memiri utama. Cache memori ini ada diantara memori utama dan register pemroses, berfungsi agar pemroses tidak langsung mengacu pada memori utama agar kinerja dapat ditingkatkan.
Cache memori ini ada dua macam yaitu :
·        Cache Memori yang terdapat pada internal processor, Cache memori jenis ini kecepatan aksesnya sangat tinggi, dan harganya sangat mahal. Hal ini bisa terlihat pada processor yang berharga mahal. semakin tinggi kapasitas cache memori maka semakin mahal dan semakin cepat processor.
·        Cache memori yang terdapat diluar processor, yaitu berada pada motherboard. Cache memori jenis ini kecepatan aksesnya sangat tinggi, meskipun tidak secepat cache memori jenis pertama (yang ada pada internal processor).semakin besar kapasitasnya maka semakin mahal dan cepat. Hal ini bisa kita lihat pada motherboard dengan beraneka ragam kapasitas cache memori yaitu 256kb, 512kb, 1Mb, 2Mb dll.

 

3.         DAFTAR PUSTAKA

Komentar

Postingan populer dari blog ini

JENIS GARDU INDUK DAN KOMPONEN PENDUKUNG

Pengertian Ekologi dan Ilmu lingkungan Secara Umum

PIPELINING, RISC DAN PROSESOR PARALELL